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Liu and Layland provide a sufficient condition for a set of periodic tasks to have a feasible fixed-priority
schedule in [1]. Task i is denoted by Ci, the time to serve each of the periodic requests, and Ti, the period.
Liu and Layland’s theorem states that the set of m tasks are feasible if

Σm
i=1

Ci

Ti
≤ m(21/m − 1) (1)

Bini, Buttazzo and Buttazzo provide a better (less pessimistic) sufficient condition in [2]. Their theorem
states that the set of tasks are feasible if

Πm
i=1(

Ci

Ti
+ 1) ≤ 2 (2)

To prove the condition in Equation 2 is better (less pessimistic) than that in Equation 1, we only need
to prove that if a set of tasks meet the latter, they also meet the former. That is, given Equation 1, we must
prove Equation 2.

Proof.

Σm
i=1

Ci

Ti
≤ m(21/m − 1) =⇒ Σm

i=1(
Ci

Ti
+ 1) ≤ m · 21/m

=⇒
Σm
i=1(

Ci
Ti

+ 1)

m
≤ 21/m

Given the inequality of arithmetic and geometric means [3], we have

[Πm
i=1(

Ci

Ti
+ 1)]1/m ≤

Σm
i=1(

Ci
Ti

+ 1)

m
≤ 21/m

=⇒ Πm
i=1(

Ci

Ti
+ 1) ≤ 2
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