A simple proof
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Liu and Layland provide a sufficient condition for a set of periodic tasks to have a feasible fixed-priority
schedule in [1]]. Task ¢ is denoted by C;, the time to serve each of the periodic requests, and T;, the period.
Liu and Layland’s theorem states that the set of m tasks are feasible if
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Bini, Buttazzo and Buttazzo provide a better (less pessimistic) sufficient condition in [2]]. Their theorem

states that the set of tasks are feasible if
C.
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To prove the condition in Equation 2] is better (less pessimistic) than that in Equation [T} we only need
to prove that if a set of tasks meet the latter, they also meet the former. That is, given Equation |1} we must
prove Equation 2]
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Given the inequality of arithmetic and geometric means [3|, we have
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